已知椭圆:经过点,.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆于两点,求面积的最大值.
已知点(N)顺次为直线上的点,点(N)顺次为轴上的点,其中,对任意的N,点、、构成以为顶点的等腰三角形.(Ⅰ)证明:数列是等差数列;(Ⅱ)求证:对任意的N,是常数,并求数列的通项公式; (Ⅲ)在上述等腰三角形中是否存在直角三角形,若存在,求出此时的值;若不存在,请说明理由.
已知椭圆,直线与椭圆交于、两点,是线段的中点,连接并延长交椭圆于点.设直线与直线的斜率分别为、,且,求椭圆的离心率.若直线经过椭圆的右焦点,且四边形是平行四边形,求直线斜率的取值范围.
(本小题满分12分)已知函数,,的最小值恰好是方程的三个根,其中.(1)求证:;(2)设是函数的两个极值点.若,求函数的解析式.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2AB=2.侧面为正三角形,且平面PAD⊥平面ABCD.网(1)若M为PC上一动点,则M在何位置时,PC⊥平面MDB?并加已证明;(2)若G为的重心,求二面角G-BD-C大小.
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试. 假设某学生每次通过测试的概率都是,每次测试通过与否互相独立. 规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生恰好经过4次测试考上大学的概率;(2)求该学生考上大学的概率.