已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足.(Ⅰ)求的面积;(Ⅱ)求函数的单调递增区间.
已知函数,且(1)若函数是偶函数,求的解析式;(2)在(1)的条件下,求函数在上的最大、最小值;(3)要使函数在上是单调函数,求的范围。
燕子每年秋天都要从北方飞到南方过冬。研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数,单位是,其中表示燕子的耗氧量。(1)计算:两岁燕子静止时的耗氧量是多少个单位?(2)当一只两岁燕子的耗氧量是80个单位时,它的飞行速度是多少?
设为奇函数,为常数.(1)求的值;(2)证明在区间内单调递增;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.
设是定义在上的单调增函数,满足,,求(1);(2)若,求的取值范围。
设向量,函数.(Ⅰ)求函数的最大值与最小正周期;(Ⅱ)求使不等式成立的的取值范围.