设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.(Ⅰ)求数列、的通项公式;(Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
已知数列的前项和为,且是与2的等差中项 ;数列中,,点在直线上。 (Ⅰ) 求数列的通项公式和; (Ⅱ)设,求数列的前n项和
如图,已知椭圆的上顶点为,右焦点为,直线与圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)若不过点的动直线与椭圆相交于、两点,且求证:直线过定点,并求出该定点的坐标
已知数列的前n项和为,且,(n=1,2,3…)数列中,,点在直线上。 (Ⅰ)求数列和的通项公式; (Ⅱ)记,求满足的最大正整数n。
已知如图几何体,正方形和矩形所在平面互相垂直,,为的中点,。 (Ⅰ)求证: ; (Ⅱ)求二面角的大小
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间。