(本小题12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,.(Ⅰ)求数列与的通项公式;(Ⅱ)求数列的前项和.
设 (Ⅰ)若,求实数的值; (Ⅱ)求在方向上的正射影的数量.
已知函数f (x) = (1)试判断当的大小关系; (2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由; (3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
设是各项都为正数的等比数列, 是等差数列,且, (1)求,的通项公式; (2)记的前项和为,求证:; (3)若均为正整数,且记所有可能乘积的和,求证:.
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧). (1)当=,时,求椭圆的方程; (2)若,求的值.
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点. (1)求证:OC⊥DF; (2)求平面DEF与平面ABC相交所成锐二面角的大小; (3)求多面体ABC—FDE的体积V.