已知椭圆的两个焦点F1(-,0),F2(,0),且椭圆短轴的两个端点与F2构成正三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使·恒为定值,求m的值.
已知关于的方程.(1)若方程表示圆,求实数的取值范围 ;(2)若圆与直线相交于两点,且,求的值
已知x=1是的一个极值点,(1)求的值;(2)求的单调递减区间(3)设试问过点(2,5)可作多少条直线与曲线相切?请说明理由.
已知椭圆,抛物线,点是上的动点,过点作抛物线的切线,交椭圆于两点,(1)当的斜率是时,求;(2)设抛物线的切线方程为,当是锐角时,求的取值范围.
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,又.(Ⅰ)求证:平面;(Ⅱ)求点B到平面PAD的距离.
甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所出次品数分别为,,且和的分布列为:
试比较两名工人谁的技术水平更高.