(本小题满分12分)有甲、乙两种味道和颜色都极为相似的名酒各4杯.从中挑出4杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求:(I )试验一次就成功的概率是多少?(II)恰好在第三次试验成功的概率是多少?(m)当试验成功的期望值是2时,需要进行多少次相互独立试验?
直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切.求: (1)光线l和反射光线所在的直线方程; (2)光线自A到切点所经过的路程.
求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0). (1)若l1与圆相切,求l1的方程; (2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点, M是PQ中点,l与直线m:x+3y+6=0相交于N. (1)求证:当l与m垂直时,l必过圆心C; (2)当PQ=2时,求直线l的方程; (3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.