(本小题满分12分)有甲、乙两种味道和颜色都极为相似的名酒各4杯.从中挑出4杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求:(I )试验一次就成功的概率是多少?(II)恰好在第三次试验成功的概率是多少?(m)当试验成功的期望值是2时,需要进行多少次相互独立试验?
已知y = f (x)是定义在[–1,1]上的奇函数,x∈[0,1]时,f (x) =.(1)求x∈[–1,0)时,y = f (x)解析式,并求y = f (x)在[0,1]上的最大值.(2)解不等式f (x)>.
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且·(I)求动点P的轨迹C的方程;(II)过点F的直线交轨迹C于A、B两点,交直线l于点M.(1)已知的值;(2)求||·||的最小值.
(本小题满分12分)数列{an}的前N项和为Sn,a1=1,an+1=2Sn (n∈N*).(I)求数列{an}的通项an;(II)求数列{nan}的前n项和T.
(本小题满分12分)设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(I)求f (x)的最小值h(t);(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(I)求证:AB1⊥平面A1BD;(II)求二面角A-A1D-B的大小.