扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).⑴求关于的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
已知点,参数,点Q在曲线C:上. (Ⅰ)求点P的轨迹方程与曲线C的直角坐标方程; (Ⅱ)求点P与点Q之间的最小值.
已知函数. (1)讨论函数的单调性; (2)若函数的最小值为,求的最大值; (3)若函数的最小值为,为定义域内的任意两个值,试比较与的大小.
已知,且. (1)求证:; (2)若恒成立,求实数的最大值.
某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考察得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为ξ,η. (1)写出ξ的概率分布列,并求出E(ξ),E(η); (2)求D(ξ),D(η).请你根据得到的数据,建议该单位派哪个选手参加竞赛?
以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为,设直线与曲线分别交于; (1)写出曲线和直线的普通方程; (2)若成等比数列,求的值.