(本小题满分13分)已知函数的反函数为,定义:若对给定的实数,函数与互为反函数,则称满足“和性质”.(1)判断函数是否满足“1和性质”,并说明理由;(2)若,其中满足“2和性质”,则是否存在实数a,使得对任意的恒成立?若存在,求出的范围;若不存在,请说明理由.
(1)若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的值; (2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
求函数y=lnx+2x-6的零点个数.
判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8]; (2)f(x)=x3-x-1,x∈[-1,2]; (3)f(x)=log2(x+2)-x,x∈[1,3].
已知函数f(x)=,g(x)=. (1)证明f(x)满足f(-x)=-f(x),并求f(x)的单调区间; (2)分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明.
指出函数f(x)=的单调区间,并比较f(-π)与f(-的大小.