(本小题满分13分)已知函数的反函数为,定义:若对给定的实数,函数与互为反函数,则称满足“和性质”.(1)判断函数是否满足“1和性质”,并说明理由;(2)若,其中满足“2和性质”,则是否存在实数a,使得对任意的恒成立?若存在,求出的范围;若不存在,请说明理由.
如图,某市准备在一个湖泊的一侧修建一条直路,另一侧修建一条观光大道,它的前一段是以为顶点,轴为对称轴,开口向右的抛物线的一部分,后一段是函数,时的图象,图象的最高点为,,垂足为. (1)求函数的解析式; (2)若在湖泊内修建如图所示的矩形水上乐园,问:点落在曲线上何处时,水上乐园的面积最大?
设函数,其中. (1)若在处取得极值,求常数的值; (2)设集合,,若元素中有唯一的整数,求的取值范围.
已知函数,其中 (1)写出的奇偶性与单调性(不要求证明); (2)若函数的定义域为,求满足不等式的实数的取值集合; (3)当时,的值恒为负,求的取值范围.
已知函数. (1)求的最小正周期; (2)在中,分别是A、B、C的对边,若,,的面积为,求的值.
设函数的定义域为集合,函数的定义域为集合.(1)求;(2)若,,求实数的取值范围.