(本小题满分13分)已知函数的反函数为,定义:若对给定的实数,函数与互为反函数,则称满足“和性质”.(1)判断函数是否满足“1和性质”,并说明理由;(2)若,其中满足“2和性质”,则是否存在实数a,使得对任意的恒成立?若存在,求出的范围;若不存在,请说明理由.
已知,命题,命题. (I)若命题为真命题,求实数的取值范围; (II)若命题为假命题,求实数的取值范围.
(本小题满分12分) 若函数满足下列两个性质: ①在其定义域上是单调增函数或单调减函数; ②在的定义域内存在某个区间使得在上的值域是.则我们称为“内含函数”. (1)判断函数是否为“内含函数”?若是,求出a、b,若不是,说明理由; (2)若函数是“内含函数”,求实数t的取值范围.
(本小题满分12分) 铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法是:行李质量不超过50 kg时,按0.25元/kg计算;超过50 kg而不超过100 kg时,其超过部分按0.35元/kg计算;超过100 kg时,其超过部分按0.45元/kg计算. (1)计算出托运费用; (2)若行李质量为56 kg,托运费用为多少?
(本小题满分12分) 若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f=f(x)-f(y). (1)求f(1)的值; (2)若f(6)=1,解不等式f(x+3)-f<2.
(本小题满分12分) 已知函数f(x)=是定义在(-∞,+∞)上的奇函数,且=. (1)求函数f(x)的解析式; (2)判断f(x)在(-1,1)上的单调性,并且证明你的结论.