.(本小题满分13分)已知数列的首项(I)证明:数列{-1}是等比数列;(II)求数列{}的前n项和Sn.
设 p:实数m满足m2-4am+3a2<0,其中a<0;q:实数m满足方程为双曲线,且的必要不充分条件,求a的取值范围。
(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:①在其定义域上是单调增函数或单调减函数;②在的定义域内存在区间,使得在上的值域是.(1)判断函数是否属于集合?并说明理由.若是,则请求出区间;(2)若函数,求实数的取值范围.
(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;(1)如果函数在上是减函数,在上是增函数,求的值;(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。(3)设常数,求函数的最大值和最小值;
(本题12分)设函数的定义域为A, 函数(其中)的定义域为B. (1) 求集合A和B; (2) 设全集,当a=0时,求;(3) 若, 求实数的取值范围.
(本题10分)计算下列各式的值:(1) (2)