.(本小题满分13分)已知数列的首项(I)证明:数列{-1}是等比数列;(II)求数列{}的前n项和Sn.
(14分)已知函数,(1)若函数为奇函数,求的值。(2)若,有唯一实数解,求的取值范围。(3)若,则是否存在实数(),使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由
(12分)已知函数(1)当时,求函数的最小值;(2)若对任意的,恒成立,试求实数的取值范围.
(12分)已知函数是定义在上的增函数,对于任意的,都有,且满足.(1)求的值; (2)求满足的的取值范围.
(12分)已知函数(1)在给定的直角坐标系内画出的图象;(2)写出的单调递增区间(不需要证明);(3)写出的最大值和最小值(不需要证明).
(10分)已知集合,,.(1) 求,;(2) 若,求的取值范围.