.(本小题满分13分)已知数列的首项(I)证明:数列{-1}是等比数列;(II)求数列{}的前n项和Sn.
一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检. 假设这批产品的合格率为80%,且各件产品是否为合格品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为元,求的概率分布及数学期望.
设,且满足:,,求证:.
已知曲线的参数方程为(为参数),曲线在点处的切线为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求的极坐标方程.
已知直线在矩阵对应的变换作用下变为直线. (1)求实数,的值; (2)若点在直线上,且,求点的坐标.
若数列满足且(其中为常数),是数列的前项和,数列满足. (1)求的值; (2)试判断是否为等差数列,并说明理由; (3)求(用表示).