已知集合,对于数列中.(Ⅰ)若三项数列满足,则这样的数列有多少个?(Ⅱ)若各项非零数列和新数列满足首项,(),且末项,记数列的前项和为,求的最大值.
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
本小题满分14分) 定义运算,记函数 (Ⅰ)已知,且,求的值; (Ⅱ)在给定的直角坐标系中,用“五点法”作出函数在 一个周期内的简图;(Ⅲ)求函数的对称中心、最大值及相应的值.
数列{an}满足Sn=2n-an,n∈N,先计算前4项后猜想an,并用数学归纳法证明
(本小题满分12分) 某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)试根据(2)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润. 参考公式:
(本小题满分14分) 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球。现从甲、乙两个盒内各任取2个球。 (1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率; (3)设为取出的4个球中红球的个数,求的分布列和数学期望