(本小题满分12分)五边形是由一个梯形与一个矩形组成的,如图甲所示,B为AC的中点,.先沿着虚线将五边形折成直二面角,如图乙所示.(1)求证:平面平面;(2)求图乙中的多面体的体积.
已知函数为实常数). (I)当时,求函数在上的最小值; (Ⅱ)若方程在区间上有解,求实数的取值范围; (Ⅲ)证明: (参考数据:)
设(1)请写出的表达式(不需证明);(2)求的极值(3)设的最大值为,的最小值为,求的最小值.
设 (1)若在上递增,求的取值范围;(2)若在上的存在单调递减区间 ,求的取值范围
已知函数(),(Ⅰ)求函数的最小值;(Ⅱ)已知,:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个点为.(1)求的解析式;(2)若求函数的值域;(3)将函数的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.