如图,在正三棱柱中,,分别为,的中点.(1)求证:平面;(2)求证:平面平面.
已知方程的两根为,若,求实数的值。
已知关于的不等式,其中。 ⑴试求不等式的解集; ⑵对于不等式的解集,若满足(其中为整数集)。试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由。
已知集合, 若,求实数的取值范围。
对定义在上,并且同时满足以下两个条件的函数称为函数。 ①对任意的,总有; ②当时,总有成立。 已知函数与是定义在上的函数。 (1)试问函数是否为函数?并说明理由; (2)若函数是函数,求实数的值; (3)在(2)的条件下,讨论方程解的个数情况。
设数列 a n 满足 a 1 = 1 , a 2 = 2 , a n = 1 3 a n - 1 + 2 a n - 2 , n = 3 , . 4 , . . . 。数列 b n 满足 b 1 = 1 , b n n = 2 , 3 , . . . 是非零整数,且对任意的正整数 m 和自然数 k ,都有 - 1 ≤ b m + b m + 1 + … + b m + k ≤ 1 。 (1)求数列 a n 和 b n 的通项公式; (2)记 c n = a n n b n n = 1 , 2 , . . . ,求数列 c n 的前 n 项和 S n 。