某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(I)估计这次测试数学成绩的平均分;(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为,求的分布列及数学期望.
森林公园有甲、乙两个相邻景点,原拟定甲景点内有2个A班的同学和2个B班的同学;乙景点内有2个A班同学和3个B班同学,后由于某种原因甲乙两景点各有一个同学交换景点观光. (1)求甲景点恰有2个A班同学的概率; (2)求甲景点A班同学数ξ的分布列及期望.
已知数列{a}中,a=2,前n项和为S,且S=. (1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式 (2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn> 对一切n∈N*都成立的最大正整数k的值
已知平面向量,. (Ⅰ)求; (Ⅱ)设,(其中),若, 试求函数关系式,并解不等式.
设函数 f x = x - 1 + x - a 。 (Ⅰ)若 a=-1 ,解不等式 f x ≥3 ; (Ⅱ)如果 ∀x∈R ,,求 a 的取值范围。
已知函数 f ( x ) = x 3 - 3 a x 2 - 9 a 2 x + a 3 .
(1)设 a = 1 ,求函数 f ( x ) 的极值; (2)若 a > 1 4 ,且当 x ∈ 1 , 4 a 时, f ` ( x ) ≤ 12 a 恒成立,试确定 a 的取值范围.