某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(I)估计这次测试数学成绩的平均分;(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为,求的分布列及数学期望.
在四棱锥P-ABCD中,底面ABCD是正方形,边长为a, PD=a,,且PD是四棱锥的高.在这个四棱锥中放入一个球,求球的最大半径.
如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积S球,S正方体,S圆柱的大小关系.
在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400π cm2,求球的表面积.
画出图1-2-9几何体的三视图:(阴影面为视角正面) 图1-2-9
根据图1-2-7中物体的三视图,画出物体的形状. 图1-2-7