如图,在三棱锥中,平面平面,,.设,分别为,中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.
已知x为实数,用表示不超过x的最大整数,例如对于函数f(x),若存在,使得,则称函数函数. (Ⅰ)判断函数是否是函数;(只需写出结论) (Ⅱ)设函数f(x)是定义R在上的周期函数,其最小正周期为T,若f(x)不是函数,求T的最小值. (Ⅲ)若函数是函数,求a的取值范围.
已知由整数组成的数列各项均不为0,其前n项和为 ,且 (Ⅰ)求的值; (Ⅱ)求的通项公式; (Ⅲ)若时,取得最小值,求a的值.
已知函数,曲线在点(0,1)处的切线为l (Ⅰ)若直线l的斜率为-3,求函数的单调区间; (Ⅱ)若函数是区间[-2,a]上的单调函数,求a的取值范围.
如图,在四边形ABCD中,AB=8,BC=3,CD=5, (Ⅰ)求BD的长; (Ⅱ)求证:
已知函数 (Ⅰ)求的值; (Ⅱ)求函数的最小正周期和单调递增区间.