如图,三棱柱中,侧面底面,,且,O为中点.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
(本小题满分12分)已知,设函数.(Ⅰ)若在 上无极值,求的值;(Ⅱ)若存在,使得是在[0, 2]上的最大值,求t的取值范围;(Ⅲ)若(为自然对数的底数)对任意恒成立时m的最大值为1,求t的取值范围.
(本小题满分12分)如图,抛物线:与椭圆:在第一象限的交点为,为坐标原点,为椭圆的右顶点,的面积为.(Ⅰ)求抛物线的方程;(Ⅱ)过点作直线交于、 两点,射线、分别交于、两点,记和的面积分别为和,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)如图,在中,已知在上,且又平面.(Ⅰ)求证:⊥平面;(Ⅱ)求二面角的余弦值.
(本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3 ,0.7 ,0.9.求:(Ⅰ)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.
(本小题满分分)在中,角所对的边为,且满足.(Ⅰ)求角的值;(Ⅱ)若且,求的取值范围.