已知函数.(Ⅰ)若函数为偶函数,求的值;(Ⅱ)若,求函数的单调递增区间;(Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.
函数。(1) 判断并证明函数的奇偶性;(2) 若,证明函数在(2,+)单调增;(3) 对任意的,恒成立,求的范围。
函数的最大值2,其图象相邻两条对称轴之间的距离为。(1)求的解析式;(2)求函数的单调增区间;
(1)求值:;(2)已知求的值。
已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().(Ⅰ)若= 30,求;(Ⅱ)试写出a30关于的关系式,并求a30的取值范围;(Ⅲ)续写已知数列,可以使得是公差为3的等差数列,请你依次类推,把已知数列推广为无穷数列,试写出关于的关系式(N);(Ⅳ)在(Ⅲ)条件下,且,试用表示此数列的前100项和
经过长期的观测得到:在交通繁忙时段,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为.(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?