从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: (1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a,b的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD. (1)证明:平面PQC⊥平面DCQ; (2)求二面角D—PQ—C的余弦值.
(1)如图,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求证:P,Q,R三点共线. (2)如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K. 求证:EH,BD,FG三条直线相交于同一点.
如图,长方体中,,点E是AB的中点. (1)求三棱锥的体积; (2)证明:; (3)求二面角的正切值.
已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切 (1)求圆C的方程; (2)过点的直线与圆C交于不同的两点且为时 求:的面积.
已知圆与圆相交于A、B两点. (1)求过A、B两点的直线方程. (2)求过A、B两点且圆心在直线上的圆的方程.