已知函数 f ( x ) = 2 x 3 - 3 x . (1)求 f ( x ) 在区间 [ - 2 , 1 ] 上的最大值; (2)若过点 P ( 1 , t ) 存在3条直线与曲线 y = f ( x ) 相切,求 t 的取值范围; (3)问过点 A ( - 1 , 2 ) , B ( 2 , 10 ) , C ( 0 , 2 ) 分别存在几条直线与曲线 y = f ( x ) 相切?(只需写出结论)
(本小题满分13分)已知函数的图象在上连续不断,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”. (1)已知函数,试写出,的表达式,并判断是否为上的“阶收缩函数”,如果是,请求对应的的值;如果不是,请说明理由; (2)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分13分)设数列是有穷等差数列,给出下面数表: …… 第1行 …… 第2行 … … … …… … 第行 上表共有行,其中第1行的个数为,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为. (1)求证:数列成等比数列; (2)若,求和.
(本小题满分13分)已知是函数的极值点. (1)当时,讨论函数的单调性; (2)当R时,函数有两个零点,求实数m的取值范围.
(本小题满分12分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y. (1)设,求y关于的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小?
(本小题满分12分)在△ABC中,设角A,B,C的对边分别为a,b,c,若, (1)求角A,B,C的大小; (2)若BC边上的中线AM的长为,求△ABC的面积.