已知的三个顶点,,,其外接圆为.(1)若直线过点,且被截得的弦长为2,求直线的方程;(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.
已知函数,. (Ⅰ)求的值; (Ⅱ)若,,求.
选修4-5:不等式选讲已知,函数的最小值为4.(Ⅰ)求的值;(Ⅱ)求的最小值.
选修4—4:坐标与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线的极坐标方程为,且点A在直线上.(Ⅰ)求的值及直线的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.
选修4—2:矩阵与变换已知矩阵的逆矩阵.(Ⅰ)求矩阵;(Ⅱ)求矩阵的特征值以及属于每个特征值的一个特征向量.
已知函数f(x)=ex+ax2-ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.