下面给出的正多边形的边长都是20cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,剪拼线段用粗黑实线表示,在图中标注出必要的符号和数据,并作简要说明.)(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等.
因式分解: -a+2a2-a 3
因式分解:
如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO 为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E,F分别是线段AD,AC上的动点(点 E不与点A,D重合),且∠CEF=∠ACB。 (1)求AC的长和点D的坐标; (2)说明△AEF与△DCE相似; (3)当△EFC为等腰三角形时,求点E的坐标。
如图,在平面直角坐标系中,一次函数的图象与y轴交于点A, 与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐 标为2, (1)求一次函数和反比例函数的解析式; (2)直接写出时x的取值范围。
某商品的进价为每件50元,售价为每件60元,每个月可卖出200件。如果每 件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元)。设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元, (1)求y与x的函数关系式,并直接写出x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?