如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.
如图,在平面直角坐标系中,点A的坐标为(12,−8),点B、C在x轴上,tan∠ABC=,AB=AC,AH⊥BC于H,D为AC的中点,BD交AH于点M.(1)求过B、C、D三点的抛物线的解析式,并求出抛物线顶点E的坐标;(2)过点E且平行于AB的直线l交y轴于点G,若将(2)中的抛物线沿直线l平移,平移后的抛物线交y轴于点F,顶点为E′(点E′在y轴右侧).是否存在这样的抛物线,使△E′FG为等腰三角形?若存在,请求出此时顶点E’的坐标;若不存在,请说明理由.
如图,边长为15cm的等边△ABC的顶点B、C都在直线l上,现将一块直角三角尺DEF按如图位置摆放,其中DE=EF=12cm,∠DEF=90°,E、F在直线l上,且F与B重合.若将三角尺DEF沿直线l以3cm/s的速度向右移动,设运动时间为t(s).(1)请直接写出三角尺DEF的顶点D落在△ABC内部(不含边上)时,时间t的取值范围:______________;(2)在运动过程中,设△DEF与△ABC的重叠部分面积为S(cm2),试求在点F到达点C之前,S与t的函数关系式,并写出自变量t的取值范围.
如图,在平面直角坐标系中,以M(0,2)圆心,4为半径的⊙M交x轴于A、B两点,交y轴于C、D两点,连结BM并延长交⊙M于点P,连结PC交x轴于点E.(1)求∠DMP的度数;(2)求△BPE的面积.
某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现y是x的一次函数.
(1)求y与x的函数关系式;(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;【备注:年利润=年销售额-总进货价-其他开支】(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.
如图,有一座拱桥是抛物线形,它的跨度AB为60米,拱桥最高处点P到AB的距离为18米,(1)建立恰当的坐标系,求出抛物线的解析式;(2)当洪水泛滥,水面上升,若拱桥的水面跨度只有30米时,则必须马上采取紧急措施.现已知拱顶P离水面CD的距离只有4米,问:是否要采取紧急措施?并说明理由.