操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。(1)分别测量下面各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.(2) 如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合下面的两个图说明其中的道理.(提示:考虑)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE于H,求证:FH∥BD.
如图:AB=AD,∠ABC=∠ADC,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:CE=CF
已知:如图,△ABC中,AB=AC,D点在AB上,E点在AC的延长线上,且BD=CE,连接DE,交BC于F.求证:DF=EF.
画出△ABC关于轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.
已知:在△ABC中,AB=AC=2,∠ABC="∠ACB=15°" 求:S△ABC.