已知a,b,c分别为ABC的三个内角A,B,C的对边,向量=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.
求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率.
(提示:1、12、13、14班同学请完成试题(B),其他班级同学任选试题(A)或(B)作答)(A) 已知点A(2,3),B(5,4),C(7,10)及,试问:(1)t为何值时,P在第三象限?(2)是否存在D点使得四边形ABCD为平行四边形,若存在,求出D点坐标.(B) 已知平行四边形ABCD,对角线AC与BD交于点E,,连接BN交AC于M,(1)若求实数λ.(2)若B(0,0),C(1,0),D(2,1),求M的坐标
在△ABC中,角A,B,C的对边分别为a,b,c,已知(1)求角B的大小(2)若,试确定△ABC的形状.
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积.
一货轮航行到M处,测得灯塔S在货轮北偏东15º相距20海里处,随后货轮按北偏西30º的方向航行,半小时后,又测得灯塔在北偏东45º,求货轮的速度。