某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示.(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少?(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
姜堰某化学试剂厂以x千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是千元. (1)要使生产该产品2小时获得利润不低于30千元,求的取值范围; (2)要使生产120千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求此最大利润.
已知函数. (1)当时,用定义证明:在上的单调递减; (2)若不恒为0的函数是奇函数,求实数的值.
已知函数f(x)=. (1)写出函数f(x)的单调减区间; (2)求解方程.
已知全集,集合. (1)分别求、; (2)求和.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数的表达式. (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)