根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示(Ⅰ)求上图中的值;(Ⅱ)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);(Ⅲ)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明).
设不等式的解集为集合,关于的不等式的解集为集合.(I)若,求实数的取值范围;(II)若∩,求实数的取值范围.
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.(Ⅰ)求抛物线的标准方程;(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
已知函数,(I)当时,求曲线在点处的切线方程;(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.
已知公差不为零的等差数列的前项和,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.
为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.