(本小题满分14分)已知A(-1,2)为抛物线C: y=2x2上的点,直线过点A,且与抛物线C 相切,直线:x=a(a≠-1)交抛物线C于B,交直线于点D.(1)求直线的方程.(2)设的面积为S1,求及S1的值.(3)设由抛物线C,直线所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.
(本小题满分12分)函数f(x)对任意的实数m,n,有f(m+n)=f(m)+f(n),当x>0时,有f(x)>0。 ①求证: ②求证:f(x)在(-∞,+∞)上为增函数. ③若f(1)=1,解不等式f(4x-2x)<2.
(本小题满分12分)在a>0时,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对x∈R恒成立,若p∧q为假,p∨q为真,求a的取值范围.
(本小题满分12分)已知函数f(x)=1+(-2<x≤2). (1)用分段的形式表示该函数; (2)画出函数的图象. (3)写出函数的值域、单调区间.
(本小题满分10分)已知全集U=R,集合A="{x|" log2(3-x)≤2},集合B={x|} (1)求A,B(2)求()∩B
(本小题满分14分)已知函数 (Ⅰ)求函数的定义域,并证明在定义域上是奇函数; (Ⅱ)若恒成立,求实数的取值范围; (Ⅲ)当时,试比较与的大小关系.