(本小题满分14分)已知A(-1,2)为抛物线C: y=2x2上的点,直线过点A,且与抛物线C 相切,直线:x=a(a≠-1)交抛物线C于B,交直线于点D.(1)求直线的方程.(2)设的面积为S1,求及S1的值.(3)设由抛物线C,直线所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.
(本小题满分10分)已知。
(本小题满分10分)选修4-5:不等式选讲 设不等式的解集为A,且 (Ⅰ)求a的值; (Ⅱ)求函数的最小值。
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (Ⅰ)若直线l与曲线C相交于A、B两点,且,试求实数m值. (Ⅱ)设为曲线上任意一点,求的取值范围.
(本小题满分12分)椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列,记△的面积为S. (Ⅰ)求椭圆C的方程. (Ⅱ)试判断是否为定值?若是,求出这个值;若不是,请说明理由? (Ⅲ)求S的范围.
(本小题满分12分)如图,在四棱锥中,底面ABCD为直角梯形,,,平面⊥底面,为的中点,是棱上的点,,, (Ⅰ)若是棱的中点,求证:; (Ⅱ)求证:若二面角M-BQ-C为30°,试求的值。