(本小题满分14分)已知A(-1,2)为抛物线C: y=2x2上的点,直线过点A,且与抛物线C 相切,直线:x=a(a≠-1)交抛物线C于B,交直线于点D.(1)求直线的方程.(2)设的面积为S1,求及S1的值.(3)设由抛物线C,直线所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.
(8分) 已知若,求的取值范围.
判断y=1-2x2在()上的单调性,并用定义证明.
设U=R,,.求A∩B、A∪B、 (CA)∩(CB).
(本小题14 分) 已知函数. ①当时,求的最小值; ②若函数在区间上为单调函数,求实数的取值范围; ③当时,不等式恒成立,求实数的取值范围.
(本小题13分) 已知抛物线方程为,过作直线. ①若与轴不垂直,交抛物线于A、B两点,是否存在轴上一定点,使得?若存在,求出m的值;若不存在,请说明理由? ②若与轴垂直,抛物线的任一切线与轴和分别交于M、N两点,则自点M到以QN为直径的圆的切线长为定值,试证之;