已知数列Sn为该数列的前n项和,计算得观察上述结果,推测出Sn(n∈N*),并用数学归纳法加以证明.
四棱锥底面是菱形,,,分别是的中点.(1)求证:平面⊥平面;(2)是上的动点,与平面所成的最大角为,求二面角的正切值.
已知等比数列的各项均为正数,且成等差数列,成等比数列.(1)求数列的通项公式;(2)已知,记,,求证:
在中,(1)求的值;(2)求的面积.
设函数(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同单位长度.已知曲线过点的直线的参数方程为(t为参数). (1)求曲线C与直线 的普通方程;(2)设曲线C经过伸缩变换得到曲线,若直线 与曲线相切,求实数的值.