己知函数f(x)=ex,xR.(1)若直线y=kx+1与f(x)的反函数图象相切,求实数k的值;(2)设x﹥0,讨论曲线y=f(x)与曲线y=mx2(m﹥0)公共点的个数;(3)设,比较与的大小并说明理由。
设函数,其中为大于零的常数.(1)当时,求函数的单调区间和极值;(2)若在区间上至少存在一点,使得成立,求的取值范围.
用0,1,2,3,4,5这六个数字组成无重复数字的五位数.试分别求出符合下列条件的五位数的个数(最后结果用数字表达):(1)总的个数; (2)奇数;(3)能被6整除的数; (4)比12345大且能被5整除的数.
已知的展开式中,第项的系数与第项的系数之比是10:1,求展开式中,(1)含的项;(2)系数最大的项.
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.(Ⅰ)求三角形ABC顶点C的轨迹方程;(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.(Ⅰ)求a、b的值; (Ⅱ)设x>0,试比较f(x)与g(x)的大小.