如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE. (1)证明:BD⊥平面PAC; (2)若PA=1,AD=2,求二面角B-PC-A的正切值.
设函数,其中。 (Ⅰ)当时,求不等式的解集 (Ⅱ)若不等式的解集为,求a的值。
在直角坐标系xOy中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2 (Ⅰ)求C2的方程 (Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
如图,,分别为的边,上的点,且不与的顶点重合。已知的长为,,的长是关于的方程x2-14x+mn=0的两个根。 (Ⅰ)证明:,,,四点共圆; (Ⅱ)若,且,求,,,所在圆的半径。
已知函数,函数 ⑴当时,求函数的表达式; ⑵若,函数在上的最小值是2 ,求的值; ⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.
设f(x)=2x3+ax+bx+1的导数为,若函数的图象关于直线对称,且.](Ⅰ)求实数,的值;(5分)(Ⅱ)求函数的极值