如图,我市拟在长为的道路的一侧修建一条运动赛道。赛道的前一部分为曲线段,该曲线段为函数的图像,且图像的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定。(1)求的值和两点间的距离(2)应如何设计,才能使折线段赛道最长
已知在时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.
已知:是一次函数,其图像过点,且,求的解析式。
已知复数,则当m为何实数时,复数z是 (1)实数;(2)虚数;(3)纯虚数;(4)零;(5)对应的点在第三象限
如图所示,流程图给出了无穷等差整数列,时,输出的时,输出的(其中d为公差) (I)求数列的通项公式; (II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上). (I)求过点P且焦点在x轴上抛物线的标准方程; (II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。