在直角坐标系中,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)圆与轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB| 成等比数列,求的取值范围.
求经过直线:与直线:的交点 ,且满足下列条件的直线方程(1)与直线平行 ; (2)与直线垂直 。
如图,椭圆经过点,其左、右顶点分别是、,左、右焦点分别是、,(异于、)是椭圆上的动点,连接交直线于、两点,若成等比数列.(Ⅰ)求此椭圆的离心率;(Ⅱ)求证:以线段为直径的圆过点.
如图,半径为30的圆形(为圆心)铁皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形材料卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设与矩形材料的边的夹角为,圆柱的体积为.(Ⅰ)求关于的函数关系式?(Ⅱ)求圆柱形罐子体积的最大值.
已知函数.(Ⅰ)若曲线在点处的切线与直线平行,求实数的值;(Ⅱ)若函数在处取得极小值,且,求实数的取值范围.
已知函数,钝角(角对边为)的角满足.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,求.