设数列满足.(I)求数列的通项;(II)设,求数列的前项和.
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.
设集合,.(1)若,求;(2)若,求实数的取值范围.
已知圆.(1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程;(2)从圆外一点向该圆引一条切线,切点为,为坐标原点,且有,求使的长取得最小值的点的坐标.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.(注:总收益=总成本+利润)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
已知x0,x0+是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.(1)求f的值;(2)若对∀x∈,都有|f(x)-m|≤1,求实数m的取值范围.