为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
在曲线C1:(θ为参数,0≤θ<2π)上求一点,使它到直线C2:(t为参数)的距离最小,并求出该点坐标和最小距离.
过点M(2,1)作曲线C:(θ为参数)的弦,使M为弦的中点,求此弦所在直线的方程.
已知直线l的参数方程:(t为参数)和圆C的极坐标方程:ρ=2sin(θ+),判断直线和圆C的位置关系.
已知两曲线参数方程分别为(0≤θ<π)和(t∈R),求它们的交点坐标.
设直线l1的参数方程为(t为参数),直线l2的方程为y=3x+4,求l1与l2间的距离.