已知函数 f ( x ) = 2 cos ( ω x + π 6 ) (其中 ω > 0 , x ∈ R )的最小正周期为 10 π . (1)求 ω 的值; (2)设 α , β ∈ [ 0 , π 2 ] , f ( 5 α + 5 3 π ) = - 6 5 , f ( 5 β - 5 6 π ) = 16 17 ,求 cos ( α + β ) 的值.
已知数列成等差数列,表示它的前项和,且,. ⑴求数列的通项公式; ⑵数列中,从第几项开始(含此项)以后各项均为负数?
、已知数列的前项和满足. (1)写出数列的前三项; (2)求证数列为等比数列,并求出的通项公式.
设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且=9S2,S4=4S2,求数列的通项公式.
函数的图像一部分如图所示, (1)求此函数解析式; (2)将(1)中的函数图像如何变化才能得到函数图像。
已知,求的值。