某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,求的最大值.
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率. (1)求椭圆的方程; (2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值; (3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
已知函数,,其中R. (1)讨论的单调性; (2)若在其定义域内为增函数,求正实数的取值范围; (3)设函数,当时,若,,总有成立,求实数的取值范围.
已知数列的前项和为,数列是公比为的等比数列,是和的等比中项. (1)求数列的通项公式; (2)求数列的前项和.
如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,. (1)证明:; (2)证明:; (3)求四棱锥与圆柱的体积比.