汕头二中拟建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米(,为正常数)需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?
如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点是的中点,连结并延长与相交于点,延长与的延长线相交于点. (Ⅰ)求证:; (Ⅱ)求证:是圆的切线.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数在区间上是减函数,求实数的最小值; (Ⅲ)若存在(是自然对数的底数)使,求实数的取值范围.
已知圆,圆,动圆与已知两圆都外切. (1)求动圆的圆心的轨迹的方程; (2)直线与点的轨迹交于不同的两点、,的中垂线与轴交于点,求点的纵坐标的取值范围.
如图,在四棱锥中,平面平面,,是等边三角形,已知. (1)设是上的一点,证明:平面平面; (2)求二面角的余弦值.
为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12. (1)求该校报考飞行员的总人数; (2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.