设点的坐标(,),其中横坐标可取-1,2,纵坐标可取-1, 1,2,(1)求出点的坐标的所有等可能结果(用树形图或列表法求解);(2)求点与点(1,-1)关于原点对称的概率。
(1)如图1,已知△ABC中,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,∠A=70°试求∠BOC的度数。(2)如图2,若BO、CO分别是△ABC的∠ABC、∠ACB的外角角平分线,BO、CO相交于O,∠A=70°试求∠BOC的度数。(3)如图3,已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,OB
.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-(100-x)2+(100-x)+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?
A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图像.(1)求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处. (1) 说明本次台风会影响B市;(2)求这次台风影响B市的时间.
.“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少