在2012年“双节”期间,高速公路车辆较多。某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽取一辆的抽样方法,抽取了40名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:,,,,,后得到如图的频率分布直方图。问:(1)该公司在调查取样中,用到的是什么抽样方法?(2)求这40辆小型汽车车速的众数和中位数的估计值;(3)若从车速在中的车辆中任取2辆,求抽出的2辆中速度在中的车辆数的分布列及其数学期望。
在三棱锥中,是等边三角形,. (1)证明:; (2)若,且平面平面,求三棱锥的体积.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=. (1)若△ABC的面积S=,求b+c的值. (2)求b+c的取值范围.
已知函数 (Ⅰ)当时,求不等式的解集; (Ⅱ)若二次函数与函数的图象恒有公共点,求实数的取值范围.
已知函数. (1)判断函数的单调性; (2)若,当时,不等式恒成立,求实数的取值范围
已知函数f(x)=x(x+a)-lnx,其中a为常数. (1)当a=-1时,求f(x)的极值; (2)若f(x)是区间内的单调函数,求实数a的取值范围; (3)过坐标原点可以作几条直线与曲线y=f(x)相切?请说明理由.