设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.(1)求椭圆的方程;(2)求动点C的轨迹E的方程;(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.
设数列的前项和为,已知,,(),是数列的前项和. (1)求数列的通项公式; (2)求满足的最大正整数的值.
如图,在四边形中,,,. (1)求的值; (2)若,,求的长.
在等差数列和等比数列中,,,(),且,,成等差数列,,,成等比数列. (1)求数列、的通项公式; (2)设,数列的前项和为,若对所有正整数恒成立,求常数的取值范围.
设函数,其中为常数. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)讨论函数的单调性.
已知函数(),其图像过点. (Ⅰ)求的值; (Ⅱ)将函数图像上各点向左平移个单位长度,得到函数的图像,求函数在上的单调递增区间.