设是公差大于零的等差数列,已知,.(Ⅰ)求的通项公式;(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.
已知定义在区间(0,+∞)上的函数f(x)满足f(=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,]都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.(1)求f()及f()(2)证明:f(x)是周期函数;(3)记an=f(2n+,求an.
化简下列各式(其中各字母均为正数):(1)(2)
求下列函数的定义域、值域及其单调区间:(1)f(x)=3;(2)g(x)=-(.
已知a=,b=9.求:(1)(2).