设平面内两定点,直线PF1和PF2相交于点P,且它们的斜率之积为定值;(Ⅰ)求动点P的轨迹C1的方程;(Ⅱ)设M(0,),N为抛物线C2:上的一动点,过点N作抛物线C2的切线交曲线C1于P、Q两点,求面积的最大值.
直线过曲线上一点,斜率为,且与x轴交于点,其中 ⑴试用表示; ⑵证明:; ⑶若对恒成立,求实数a的取值范围。
已知是定义在上的奇函数,当时,。 (1)求函数的解析式; (2)求不等式的解集。
设函数的定义域是R,对于任意实数,恒有,且当时,. (Ⅰ)求证:,且当时,有; (Ⅱ)判断在R上的单调性; (Ⅲ)设集合,集合,若,求的取值范围.
设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立; (Ⅰ)(本问5分)求实数a、b的值; (Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n), 证明:
已知,,3]. (1)求f(x); (2)求; (3)在f(x)与的公共定义域上,解不等式f(x)>+.