如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,点M在线段EC上.(I)当点M为EC中点时,求证: 面;(II)求证:平面BDE丄平面BEC;(III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为时,求三棱锥M-BDE的体积.
已知(1)证明函数在上是增函数;(2)用反证法证明方程没有负数根.
一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用表示转速(单位转/秒),用表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定与之间有线性相关关系,求对的回归直线方程.(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)(参考公式)
求过点P(,且被圆C:截得的弦长等于8的直线方程。
已知定义域为的函数同时满足以下三个条件:(1) 对任意的,总有;(2);(3) 若,,且,则有成立,则称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,假定存在,使得且, 求证:.
如图,四棱锥中, ∥,,侧面为等边三角形..(1)证明:(2)求AB与平面SBC所成角的正弦值。