一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用表示转速(单位转/秒),用表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定与之间有线性相关关系,求对的回归直线方程.(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)(参考公式)
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2. (Ⅰ)求异面直线EF与BC所成角的大小; (Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.
如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2 A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn. (I)求a2与an; (Ⅱ)求Sn,并证明Sn<.
在△ABC中,内角A,B,C满足4sinAsinC-2cos(A-C)=1. (Ⅰ)求角B的大小; (Ⅱ)求sinA+2sinC的取值范围.
已知函数,若函数为奇函数,求的值. (2)若,有唯一实数解,求的取值范围. (3)若,则是否存在实数,使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由.
已知函数是定义域为的单调减函数,且是奇函数,当时, (1)求的解析式;(2)解关于的不等式