如图①,△BCD内接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.(1)求证:AB⊥CD;(2)求直线BD和平面ACD所成的角的正切值;(3)求四面体的体积。
(本小题满分12分)在等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公比为的等比数列,求的前项和.
(本小题满分12分)已知A、B、C为的三个内角且向量共线。(Ⅰ)求角C的大小:(Ⅱ)设角的对边分别是,且满足,试判断的形状.
已知函数.(Ⅰ)当时,函数取得极大值,求实数的值;(Ⅱ)已知结论:若函数在区间内存在导数,则存在,使得. 试用这个结论证明:若函数(其中),则对任意,都有;(Ⅲ)已知正数满足,求证:对任意的实数,若时,都有.
如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.(Ⅰ)确定点的位置,使得;(Ⅱ)当时,求二面角的平面角余弦值.
已知等差数列的首项,公差.且分别是等比数列的. (Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意自然数均有…成立,求… 的值.