已知函数.(Ⅰ)当时,函数取得极大值,求实数的值;(Ⅱ)已知结论:若函数在区间内存在导数,则存在,使得. 试用这个结论证明:若函数(其中),则对任意,都有;(Ⅲ)已知正数满足,求证:对任意的实数,若时,都有.
设,函数.(1)若,求函数在区间上的最大值;(2)若,写出函数的单调区间(不必证明);(3)若存在,使得关于的方程有三个不相等的实数解,求实数的取值范围.
已知函数 , . (Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,函数在上的最大值为,若存在,使得成立,求实数b的取值范围.
已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求f(x)的单调区间.
已知函数(1)若为的极值点,求的值;(2)若的图象在点处的切线方程为,①求在区间上的最大值;②求函数的单调区间.
已知函数(Ⅰ)当在区间上的最大值和最小值;(Ⅱ)若在区间上,函数的图象恒在直线下方,求的取值范围.