已知函数.(Ⅰ)当时,函数取得极大值,求实数的值;(Ⅱ)已知结论:若函数在区间内存在导数,则存在,使得. 试用这个结论证明:若函数(其中),则对任意,都有;(Ⅲ)已知正数满足,求证:对任意的实数,若时,都有.
在直角坐标系中,直线的参数方程为,曲线C的参数方程为. (Ⅰ)将曲线C的参数方程转化为普通方程; (Ⅱ)若直线与曲线C相交于A、B两点,试求线段AB的长.
如右图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点. (Ⅰ)求证;AD∥OC; (Ⅱ)若⊙O的半径为1,求AD·OC的值.
已知函数. (Ⅰ)当时,求函数的单调区间和极值; (Ⅱ)若在上是单调递增函数,求实数的取值范围.
一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球. (Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率; (Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
设函数,对任意实数都有 (Ⅰ)求的值; (Ⅱ)若的值; (Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.