如图,抛物线与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,,且S△AOC=1,过点P作PB⊥y轴于点B.(1)求BP的长;(2)求抛物线与x轴的交点坐标.
解方程(本题共4小题,每小题4分,共16分) (1)x2-2x-99=0 (2)3x2-6x+1=0 (3)x(x+2)=5x+10 (4)(x-2)2=(2x+3)2
如图,已知抛物线与轴的一个交点为A(3,0),与轴的交点为B(0,3),其顶点为C,对称轴为. (1)求抛物线的解析式: (2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标; (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F. (1)当AB=AC时,(如图1), ①∠EBF=° ②探究线段BE与FD的数量关系,并加以证明; (2)当AB=kAC时(如图2),求的值(用含k的式子表示).
某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价(元/台)与采购数量(台)满足(,为整数);冰箱的采购单价(元/台)与采购数量(台)满足(,为整数). (1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案? (2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
已知关于的一元二次方程,其中、、分别为△ABC三边的长. (1)如果是方程的根,试判断△ABC的形状,并说明理由: (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.