已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
已知函数, (1) 设(其中是的导函数),求的最大值; (2) 证明: 当时,求证: ; (3) 设,当时,不等式恒成立,求的最大值
在数列中,,,且已知函数在处取得极值。 ⑴证明:数列是等比数列 ⑵求数列的通项和前项和
某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB="20km,CB" ="10km" ,为了处理三家工厂的污水,现要在矩形ABCD 的区域中(含边界),且与A,B等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km. (Ⅰ)设∠BAO=(rad),将表示成的函数关系式; (Ⅱ)请用(Ⅰ)中的函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
已知数列{}满足,是与的等差中项. (1)求数列{}的通项公式; (2)若满足,,求的最大值.
已知向量,设函数。 (1)求的最小正周期与单调递减区间。 (2)在中,、、分别是角、、的对边,若的面积为,求的值