(本小题满分12分)已知点及圆:.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点P的直线与圆交于、两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于,两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
已知α∈,β∈且sin(α+β)=,cos β=-. 求sin α.
已知函数f(x)=()x, 函数y=f-1(x)是函数y=f(x)的反函数. (1)若函数y=f-1(mx2+mx+1)的定义域为R,求实数m的取值范围; (2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a); (3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由
设函数f(x)=x2+x-. (1)若函数的定义域为[0,3],求f(x)的值域; (2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值
某工厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少时,零件的实际出厂单价恰为51元; (2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1 000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本
已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为区间[-1,1]. (1)求g(x)的解析式; (2)判断g(x)的单调性.