(本小题满分14分)某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数,的图象,且图象的最高点为;赛道的后一部分为折线段MNP。为保证参赛运动员的安全,限定.(1)求的值和M、P两点间的距离;(2)应如何设计,才能使折线段赛道MNP最长。
(本题满分12分)求圆心在直线上,且经过圆与圆的交点的圆方程.
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:(1)求实数的取值范围;(2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.
(本题满分10分) 若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分l2分)已知函数(1)若,求函数的极小值;(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
(本小题满分12分)如图,在平面直角坐标系中,椭圆的焦距为2,且过点.求椭圆的方程;若点,分别是椭圆的左、右顶点,直线经过点且垂直于轴,点是椭圆上异于,的任意一点,直线交于点(ⅰ)设直线的斜率为直线的斜率为,求证:为定值;(ⅱ)设过点垂直于的直线为.求证:直线过定点,并求出定点的坐标.