现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
已知向量,设函数 (1)求函数的单调递增区间; (2)在中,角、、的对边分别为、、,且满足,,求的值.
设函数. (1)求的最小正周期。 (2)若函数与的图像关于直线对称,求当时的最大值.
已知函数,. (1)设是函数图象的一条对称轴,求的值. (2)求函数的单调递增区间.
已知函数(其中)的图象与x轴的相邻两个交点之间的距离为,且图象上一个最高点为 (1)求的解析式; (2)当,求的值域.
某公司以每吨10万元的价格销售某种产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少,该产品每吨的价格上涨百分之几,可使销售的总金额最大?